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ABSTRACT : In this research paper, the authors have developed an Interval Improved Fast 

Decoupled Power Flow (IIFDPF) algorithm to address data uncertainty in load and generation 

for power systems. The algorithm utilizes Interval arithmetic-based techniques and solves the 

Interval power flow method. The objective of this study is to handle uncertainties arising from 

measurement errors by accurately modeling load and generator bus data. To achieve this, the 

authors incorporate Interval arithmetic-based techniques into the IIFDPF algorithm, which 

enables the treatment of bus data uncertainty. The algorithm employs Interval Newton's method 

to solve the nonlinear model and two sets of linear Interval equations, namely the decoupled 

active power (P) and reactive power (Q) equations. In each iteration, the algorithm updates the 

voltage angle and bus voltage using different strategies, and the Newton operator is utilized for 

solving these equations. The proposed method demonstrates faster convergence and saves 

computing time compared to traditional probabilistic Monte Carlo methods. To validate the 

effectiveness of the proposed method, the authors conducted tests on IEEE-30, 57, and 118 bus 

systems. The results obtained from the proposed method were compared with those obtained 

from the traditional probabilistic Monte Carlo method. The comparison confirmed that the 

proposed method achieved faster convergence and validated its effectiveness. Additionally, the 

authors discussed the drawbacks of existing interval power flow methods in the paper. 

 

Keywords: Load Flow Studies, Y-matrix and Z-matrix iteration, Newton-Raphson method, 

Fast decoupled method, Fuzzy logic, Interval arithmetic, Probabilistic methods. 

 

I. INTRODUCTION 

In recent years, researchers have devoted significant effort to the field of power flow analysis. 

However, conventional methodologies fail to address the presence of uncertainties in the 

mathematical modeling of power systems. Uncertainties in power systems can arise from 

various sources, such as environmental factors, regulatory changes, and technological 

advancements. The uncertainties in power systems can be attributed to several factors.  

Firstly, the type of mathematical model used can introduce uncertainties. Different 

assumptions and simplifications made in the modeling process can lead to uncertainties in the 

results. Secondly, uncertainties can arise from the representation of various physical 
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components within the power system. Inaccuracies in modeling these components can affect 

the overall system behaviour. Thirdly, uncertainties can stem from errors in the parameter 

values used in the models. Inaccurate or imprecise parameter values can introduce uncertainties 

in the analysis. Fourthly, uncertainties can be introduced through the introduction of noise at 

the inputs of the system. Finally, numerical modeling using finite arithmetic can also contribute 

to uncertainties in the results.  

To represent uncertainties, researchers have explored both qualitative and quantitative 

approaches. Qualitative uncertainties are typically expressed in verbal terms, such as "near to" 

or "smaller than." On the other hand, quantitative uncertainties are represented numerically 

using mathematical functions with deterministic parameters. There are three main approaches 

to address uncertainties in power systems: probabilistic methods, fuzzy logic, and interval 

arithmetic (IA). Probabilistic methods use probability theory to handle uncertainties, fuzzy 

logic employs fuzzy variables to represent uncertainties, and interval arithmetic utilizes interval 

variables to capture uncertainties. However, it is worth noting that the available methods for 

handling uncertainties in power systems are still limited in number. In conclusion, uncertainties 

in power systems pose challenges to conventional power flow analysis methodologies. The 

sources of uncertainties can vary, and both qualitative and quantitative approaches have been 

explored to represent them. However, the methods for handling uncertainties in power systems 

are relatively scarce, and further research is needed in this area. 

 

Uncertain Power Flow Study: 

 

Probabilistic load flow: 

The concept of probabilistic load flow was introduced over 30 years ago [1-2], and since then, 

extensive research has been conducted on various methods [3-17]. Probabilistic load flow 

methods can generally be categorized into three groups: simulation methods, analytical 

methods, and approximate methods [17, 18].  

One commonly used simulation method is Monte Carlo simulation [19], which has been 

employed in reliability assessments for many years. This approach involves performing load 

flow calculations multiple times based on samples of uncertain factors. By statistically 

analyzing the results, probability distributions of reliability indices and system states of interest 

can be obtained. However, Monte Carlo simulation is time-consuming, and although various 

variance reduction techniques [20] have been employed to mitigate this issue, a significant 

number of calculations (tens of thousands) are still required to obtain meaningful results. 

Consequently, the high computational cost limits the practical application of Monte Carlo 

simulation primarily to long-term expansion planning. On the other hand, analytical methods 

offer computational advantages compared to simulation methods. These methods are more 

efficient in terms of computational requirements and provide quicker results. 

In the initial stages of analytical methods, convolution techniques [2-3] were commonly 

used to derive probability distributions for desired variables. However, these methods still had 

limited computational efficiency, although attempts were made to improve them by employing 

fast Fourier transform [5]. As a result, alternative analytical methods based on numerical 

characteristics such as moments and cumulant were developed [10-14]. These methods make 
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a fundamental assumption of independent uncertain inputs and often utilize linearized load 

flow equations to leverage the properties of these numerical characteristics. Experimental 

results have demonstrated that linearized load flow equations remain valid within a specific 

range of uncertain inputs [10, 12], allowing for significant computational efficiency. The 

cumulant method [12-14] represents one such approach. However, linearization of load flow 

equations necessitates a fixed network configuration, which presents challenges when dealing 

with network changes, such as branch outages [13, 14]. Therefore, addressing network 

modifications, such as branch outages, requires the implementation of complex techniques in 

these analytical methods. 

 

Approximate methods offer a compromise between speed and precision, and two well-known 

approaches in this category are the first-order, second-moment method [15] and the point 

estimate method [16]. While approximate methods also utilize numerical characteristics of 

inputs like analytical methods, they employ different strategies to determine the numerical 

characteristics of outputs, without relying on linearized load flow equations. For instance, the 

point estimate method [16] maps uncertain inputs to specific locations and corresponding 

weights, enabling straightforward calculation of output moments. However, these methods 

have certain limitations. Non-normal probability distributions, statistical dependence among 

input variables, and accurately identifying probability distributions for certain input data (e.g., 

power generated by wind or solar generators) pose challenges. These complexities can result 

in computationally intensive procedures, which may restrict the practical application of these 

methods, particularly when dealing with large networks. 

 

Hence, despite their advantages in terms of computational efficiency, approximate methods 

face challenges due to non-normal distributions, statistical dependencies, and accurately 

characterizing certain input data distributions. These limitations may hinder their widespread 

use in practical applications, especially when studying large-scale networks. 

 

Fuzzy load flow:    

Zadeh Lotfi extensively documented the terminology associated with Fuzzy Inference 

Systems, including key terms such as fuzzification, rule base, membership function, linguistic 

variable, and defuzzification [21]. Fuzzy Logic (FL) has found applications in various power 

system problems, including load forecasting, system control, security assessment, system 

planning, and power system stability [22-23]. In recent years, fuzzy logic-based approaches 

have been utilized in different ways to address power flow problems [24-28]. 

 

One study [24] applied the principles of Fuzzy set theory to model input parameters for 

power flow analysis. This approach leveraged Fuzzy logic to handle the uncertainties and 

imprecise nature of power system variables. Another work [25] focused on utilizing Fuzzy 

logic for on-line voltage estimation in situations such as outages and load changes. By 

employing Fuzzy-based techniques, these methods aimed to enhance the accuracy and 

robustness of voltage estimation in dynamic power system conditions. 
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These examples demonstrate how Fuzzy logic has been effectively employed in power 

system analysis and control, specifically in power flow analysis and voltage estimation under 

varying operating conditions. 

In the context of power systems, a Fuzzy set-based reasoning approach was developed for 

contingency ranking in [26]. Another application of Fuzzy logic was demonstrated in [27], 

where parameters such as transmission-line impedance, phase angle, and transformer tap 

positions were adjusted using Fuzzy logic techniques. 

 

In [28], real and reactive power mismatches per voltage magnitude at each bus of the system 

were selected as crisp input values. These values were then fuzzified using a fuzzifier. A rule 

base, defined by the process logic, was utilized to process the Fuzzy output signals, which were 

subsequently defuzzified. The resulting crisp values were employed to correct the voltage angle 

and magnitude at each bus of the system. Triangular membership functions were used for the 

purpose of fuzzification. 

 

Furthermore, Fuzzy logic has been applied in load flow studies and contingency ranking to 

adjust variable parameters [29]. By leveraging Fuzzy logic techniques, these studies aimed to 

enhance the accuracy and efficiency of load flow analysis and contingency assessment in power 

systems. 

 

Interval load flow: 

In recent years, there has been a growing trend in representing uncertain variables in load flows 

using Interval numbers. Interval arithmetic allows for obtaining solutions that can be associated 

with every possible value within a given range, providing uniform validity. This appealing 

characteristic of Interval arithmetic has attracted the attention of researchers, leading to 

significant contributions in solving uncertain electrical power flow problems. Researchers such 

as Barboza, Zian Wang, and others have made notable contributions to the international 

literature in this field [30-36]. Their work focuses on utilizing Interval arithmetic to address 

the challenges posed by uncertainty in electrical power flow analysis. These efforts have aimed 

to enhance the accuracy and reliability of load flow calculations by considering the range of 

possible values for uncertain variables, thereby providing more robust solutions. The 

contributions of these researchers have advanced the understanding and application of Interval 

arithmetic in solving uncertain electrical power flow problems, making a significant impact in 

the international literature. 

Zian Wang and F.L. Alvarado [30] proposed a method for solving load flow problems 

using Interval arithmetic, which takes into account the uncertainty associated with nodal 

values. They suggested that the non-linear equations can be solved using operators such as 

Interval Newton, Krawczyk, or Hansen-Sengupta. These operators facilitate obtaining the 

required solutions for the non-linear equations in the context of Interval arithmetic. 

 

Barboza and other researchers presented their methodology for solving uncertain power 

flow problems through a series of research articles [32-36]. They also applied Interval 

mathematics to load flow analysis [33-35], utilizing Krawczyk's method to solve non-linear 
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equations. They noted that Krawczyk's method helps overcome the issue of excessive 

conservatism encountered in solving Interval linear equations. To ensure convergence, these 

methods precondition the linearized power flow equations using an M-matrix. 

 

The research contributions of Zian Wang, F.L. Alvarado, Barboza, and others have 

demonstrated the application of Interval arithmetic and specific operators to solve load flow 

problems with uncertainty. By incorporating uncertainty considerations and employing 

appropriate mathematical techniques, these methods offer potential solutions to uncertain 

power flow analysis, overcoming challenges such as excessive conservatism and guaranteeing 

convergence through preconditioning. In reference [30], the set of non-linear equations was 

solved using the Gauss-Seidel method. However, preconditioning is necessary, and there is no 

guarantee of convergence if the Interval input is too large. Therefore, this method cannot 

provide an exact solution, and its convergence may be limited in certain cases. 

 

In reference [37], Interval arithmetic was employed in the Fast Decoupled power flow method 

to obtain solutions for power flow problems with uncertainty. Linearization was achieved 

through the Interval Gauss elimination method. It is important to note that the use of Interval 

Gauss elimination in the power flow process yields realistic solution bounds only for certain 

special classes of matrices. However, this approach often exhibits excessive conservatism, 

resulting in conservative solution bounds that may be overly cautious or restrictive. While these 

methods utilize Interval arithmetic to address uncertainty in power flow analysis, they have 

limitations. The Gauss-Seidel method may not guarantee convergence for large Interval inputs, 

and the solution may not be exact. Similarly, the Interval Gauss elimination method used in 

Fast Decoupled power flow can lead to conservative solution bounds, which may restrict the 

range of feasible solutions. These considerations highlight the challenges associated with using 

Interval arithmetic in power flow analysis and the need for further research to develop more 

accurate and efficient methods for handling uncertainty in power systems. 

 

The recent methods mentioned above for the Interval Power Flow method, considering 

uncertainty, have several limitations: 

 

1. The Interval Power Flow method requires solving non-linear equations, which can 

be done using operators such as Interval Newton, Krawczyk, or Hansen-Sengupta. 

This adds complexity to the computation. 

 

2. The problem of excessive conservatism is addressed by Krawczyk's operator, but it 

requires preconditioning with the Jacobian matrix during the linearization process. 

Computing the inverse of the Jacobian matrix remains a computationally intensive 

task. 

 

3. The use of Interval Gauss elimination in the power flow solution process yields 

realistic solution bounds only for specific classes of matrices, such as M-matrices, 

H-matrices, diagonal-dominant matrices, and tridiagonal matrices. 
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4. Due to the nature of interval arithmetic, the width of the interval components tends 

to grow larger as interval calculations are carried out in the Gaussian elimination 

process. 

 

5. If a solution is obtained using Interval Gauss elimination, it is likely that the width 

of the components is very large. Additionally, there are cases where all contenders 

for pivot, or the bottom right elements in the upper triangular system, contain zero, 

leading to a breakdown of the algorithm due to division by zero. 

 

6. Interval Gauss-Seidel iteration is used to solve the interval equations, but 

convergence is guaranteed only when the linearized power flow equation is 

preconditioned by an M-matrix. 

 

7. Despite their limitations, Interval algorithms can be faster than conventional 

algorithms. 

 

These limitations highlight the challenges and complexities associated with utilizing 

Interval arithmetic in power flow analysis with uncertainty. Further research is needed to 

develop more efficient and accurate methods that can overcome these limitations and provide 

reliable solutions for power system analysis. 

 

The computational properties of different methods for handling uncertainty can vary 

significantly, with some methods being more time-consuming than others. By understanding 

the relationships among these methods, we can choose a faster yet still adequate approach and 

draw valid conclusions. 

 

Among the methods, interval mathematics (IM) stands out as the simplest and most widely 

used. It enables numerical computations by representing each quantity as an interval of 

floating-point numbers, without incorporating a probability structure. Given its simplicity and 

popularity, it is worthwhile to explore additional techniques within the realm of interval 

mathematics that are suitable for large-scale computations. 

 

Investigating and developing further techniques within interval mathematics can lead to 

improved efficiency and scalability, making it feasible to apply interval-based approaches to 

larger and more complex systems. By leveraging the advantages of interval mathematics and 

exploring innovative techniques, researchers can advance the computational capabilities of 

uncertainty handling methods, making them more suitable for practical applications and large-

scale computations. 

II. Interval Improved Fast Decoupled Power Flow (IIFDPF) Under Uncertainty: 

Firstly, interval numbers are used to express the uncertain variables in power system such as 

the uncertainty of all the load bus (PQ bus i.e. Pd and Qd) and generator bus (PV bus i.e. Pg and 

Qg).   
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Real and reactive powers can be expressed as  

P p =  |Vp| ∑ |Vq||ypq| cos(  θpq +  δ q −  δ p )
n

q=1
     p = 1, 2,  ….n               (1)  

Q p =  − |Vp| ∑ |Vq||ypq| sin ( θpq +  δ q −  δ p )
n

q=1
    p = 1, 2,  ….n               (2) 

Conventional Power flow equations (1) and (2) become interval power flow equations 

by introducing uncertainty in the parameters as in (3) and (4) respectively. 

Interval power flow equations as below by introducing uncertainty in the parameters. 

[Ppcal¯, Ppcal+] = [Ṽp] ∑ {[Ṽq]n
q=1  |Ypq | Cos (θpq +  δ̃q − δ̃p)}   (3) 

p = 1 … … . n ; p ≠ slack   

[Qpcal¯, Qpcal+] = [Ṽp] ∑ {[Ṽq]n
q=1  |Ypq | sin (θpq + δ̃q − δ̃p)}   (4) 

p = 1 … … . n ; p ≠ PV p ≠ slack  

Where, nis the number of buses 

[θpq¯, θpq⁺] = [θp¯, θp⁺] − [θq¯, θq⁺]       

The interval power flow method essentially means a procedure to find a solution for the 

following interval power equations i.e., solving (3), (4) for [Vp¯, Vp⁺]where (p ∈PQ buses) and 

 [δp¯, δp⁺]where (p ≠slack) for given [Pp¯, Pp+]where (i≠slack), [Qp¯, Qp+]where (p ∈PQ 

buses) and [Vp¯, Vp⁺]where (p ∈PV buses). 

Ṽp and δ̃p can be calculated by: 

Ṽpor Vpo = [Vp⁻ + Vp+]/2  and δ ̃p or δp0= [δp¯ + δp⁺]/2 

it must be noted here that equations (3) and (4) differ from the standard load flow equations in 

polar coordinates. Since the active and reactive power at all the PQ buses and active power and 

voltage magnitude at all the PV buses are intervals. 

Solving Interval Improved Fast Decoupled Power Flow (IIFDPF) 

 

Initialization of iterative process 

 

The IIFDPF method is starts after convergence of deterministic or punctual fast decoupled 

power flow FDPF method. Its initialization carried out based on deterministic or punctual 

voltage profile and on definition of load variations is as follows: 

The real and reactive powers are given by  

Ppsp = Pgp – Pdp and Qpsp = Qgp−Qdp, 

Where Pgp and Qgp are the generated real and reactive powers at bus p, and Pdp and Qdp are the 

real and reactive power loads at bus p, respectively. Assuming the percent of uncertainty is ‘e’. 

[Ppsp¯, Ppsp⁺]     =  [Ppsp(1 − e), Ppsp(1 + e)]                               

5(a) 
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[Qpsp⁻, Qpsp⁺] = [Qpsp(1 − e), Qpsp(1 − e)]                      

  5(b) 

Where Ppsp and Qpsp are specified active and reactive powers at bus p respectively, obtained 

from given bus data for the given test system. In operation of actual power system, the influence 

of parameter uncertainty of electric lines and transformer factor is not often small enough to be 

neglected. 

Interval voltages are initialized by using the deterministic or punctual voltage profile as 

midpoint and the largest load data variation factor i.e. uncertain error as radius of interval. 

Thus: 

[Vp¯, Vp⁺]     =  [Vpo(1 − e), Vpo(1 + e)]          5(c) 

[δp⁻, δp⁺] = [δpo(1 − e), δpo(1 − e)]                    

 5(d) 

 where Vpo and 𝛿po are obtained from deterministic or punctual load flow in order to ensure a 

good initial condition for convergence of iterative process. Where equations 5(a),5(b) are 

interval active and reactive powers and equations 5(c) and 5(d) are the voltage magnitude and 

voltage phase angle in interval model. 

The Fast Decoupled Power Flow Method (FDPFM) is one of the improved methods; which 

was based on a simplification of the Newton –Raphson’s method and reported by Stott and 

Alsac in 1974.This method due to its calculation simplifications, fast convergence and reliable 

results, becomes widely used in power flow analysis, after simplifications and assumptions of 

NR method.  

The assumptions valid in normal power system operation are follows: 

Cos 𝛿pq ≅ 1, Sin 𝛿pq ≅ 0,  

Gpq sin 𝛿pq≪ Bpq ; and Qp≪ Bpp|vp|2 

With these assumptions, the entries of the [H] and [L] sub matrices, which are the elements of 

Jacobian matrix, become considerably simplified, as 

Hpq = Lpq = - |Vp| |Vq| Bpq, p≠ q 

Hpp = Lpp = - Bpp |Vp|2 

Matrices [H] and [L] are square matrices with dimensions (n-1) and (m-1), respectively. Where 

(m-1) = number of PQ buses, and n-1= number of PQ and PV buses. 

∆Pp

|Vp|
 = ∑  [Bpq] ∆δq n

q=2       p=2, ……., n           (6) 

∆Qp

|Vp|
 = ∑ [−Bpq]∆|Vq|     n

q=2 p=2,……, m           (7) 

∆Pp

|Vp|
 = - B ′∆δ              (8) 

∆Qp

|Vp|
= - B ′′ ∆|V|              (9) 
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Then, the mathematical model of the Fast Decoupled Power Flow using interval arithmetic 

modelled as follows. 

[∆P−,∆P+]

 [Vp¯,Vp⁺]|
 = - [B] ′[∆δ⁻, ∆δ⁺]            (10)         

[∆Q−,∆Q+]

 [Vp¯,Vp⁺]|
= - B ′′ [∆V⁻, ∆V⁺]             (11) 

The above two equations are in interval form which are developed from punctual equations 

discussed above. 

The equations (10) & (11) can be simplified as below: 

[∆δ⁻, ∆δ⁺]= - [B'] \
[∆P−,∆P+]

 [Vp¯,Vp⁺]|
             (12) 

[∆V⁻, ∆V⁺]= - [B''] \
[∆Q−,∆Q+]

 [Vp¯,Vp⁺]|
            (13) 

Equations (12) and (13) involve two matrices, B' and B'', which are both real and sparse. 

These matrices have the structure of [H] and [L], respectively. As they only consist of 

admittances, their values remain constant throughout the load flow analysis. Therefore, they 

only need to be triangularized once at the beginning of the analysis. During the load flow 

analysis, separate convergence tests are conducted for real power and reactive power 

mismatches. These tests assess the accuracy of the calculated values compared to the specified 

target values. By applying separate convergence tests for real and reactive power, the load flow 

analysis can ensure the accuracy of both components of power flow. Overall, the load flow 

analysis involves triangularizing the B' and B'' matrices, which have a sparse structure and 

consist of constant admittance values. The analysis then applies separate convergence tests for 

real and reactive power mismatches to verify the accuracy of the calculated values. 

The Interval Interval Decoupled Power Flow (IIFDPF) algorithm is employed to solve 

the interval power flow method. This method involves solving a resulting non-linear model 

using Interval Newton's operator, along with two sets of linear interval equations known as the 

Interval Decoupled P equations and Q equations, represented by equations (10) and (11) 

respectively. In contrast to the conventional Fast Decoupled method, where both the voltage 

magnitude and voltage angle are updated simultaneously in each iteration, the proposed IIFDPF 

algorithm takes advantage of the weak coupling between ΔP and ΔV, as well as between ΔQ 

and Δδ. This approach involves updating either the voltage angle or the voltage magnitude at 

each bus. Then, the real and reactive power values are recalculated, and the second variable is 

updated based on the first one that was updated. To improve speed and convergence reliability, 

the algorithm repeats the update of one variable multiple times while keeping the other variable 

at its last calculated value. This technique effectively reduces the number of iterations required, 

leading to faster convergence of the algorithm. Overall, the IIFDPF algorithm offers an 

improved approach for solving the interval power flow problem. By leveraging decoupling and 

selective variable updates, it achieves faster convergence and enhanced computational 

efficiency compared to traditional methods. 

In order to solve the above equations (10) and (11) Newton operator needs to be calculated. 

Linear equation can solved as to give Newton’s operator in equation (14) 
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N (x̃ , x) = x̃ – J(x)−1 f (x̃)             (14) 

Using, the following notation ∆x = −J(x)−1 f( x̃ ) that results in the iteration, as 

equation(15),(16),(17) 

∆ x(k) = − J(x(k) )−1 f (x̃ (k)  )                (15) 

N (x̃ (k), x(k) ) = x̃ (k)  + ∆x(k)              (16) 

x(k+1)  = x(k)  ∩  N(x̃ (k), x(k) )             (17) 

from the above procedure, after calculating the Newton’s operator, a new interval voltage 

solution is obtained as 

[Vp¯, Vp⁺] = [Ṽp + ∆V‾, Ṽp + ∆V⁺] and [δp¯, δp⁺] = [ δ̃ + ∆δ‾,  δ̃ + ∆δ⁺]. 

 

The IIFDPF algorithm employs a specific strategy where either the voltage angle (δ) or the 

voltage magnitude (V) at each bus is updated, followed by a recalculation of the real and 

reactive power. The second variable is then updated based on which variable was updated first. 

This process is carried out in various combinations, categorized by the number of loops for 

each variable update. For instance, if the voltage angle is updated twice (2) and then the voltage 

magnitude is updated once (1) within the same iteration, it is denoted as (2:1). To assess the 

convergence of the proposed method, the algorithm calculates the difference between the radii 

at iteration (k + 1) and the radii at iteration (k). If this difference exceeds a specified tolerance 

value (ε), the iterative process continues. 

In summary, the IIFDPF algorithm follows a specific updating strategy for voltage angle and 

voltage magnitude at each bus, and the convergence is evaluated based on the difference 

between radii in consecutive iterations. By controlling the tolerance value, the algorithm 

determines when to terminate the iterative process and achieve convergence. 

III. RESULT AND DISCUSSION 

In this section, we apply the proposed methodology to perform power flow analysis considering 

uncertainties in the IEEE 30, 57, and 118 bus test systems. The objective is to determine power 

flow solution bounds using an Interval Analysis (IA)-based technique and compare them with 

the bounds obtained through Monte Carlo simulation using a uniform distribution. To 

incorporate uncertainties in the input data, we assume a 10% uncertainty on the load and 

generator power bounds, as illustrated in Figure 1(a) and Figure 1(b). We then employ the 

proposed IA-based methodology to calculate the power flow solution bounds considering these 

uncertainties. The IA-based technique allows us to obtain robust bounds for the power flow 

solutions. By comparing the bounds obtained through IA-based calculations with those 

obtained using Monte Carlo simulation, we can evaluate the effectiveness of the proposed 

methodology in capturing the uncertainties and providing reliable power flow solution bounds. 
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Fig.1 (a). Assumed Uncertain Active power with 10% uncertain error in input data 

 

Fig.1(b).Assumed Uncertain Reactive power with 10% uncertain error in input data 

The performance of the IIFDPFL (Interval Interval Fast Decoupled Power Flow) algorithm 

was evaluated on IEEE 30, 57, and 118 bus systems, considering a convergence accuracy of 

10-3 times on a MVA (Mega Volt-Ampere) base of 100 for both power residuals, delta P and 

delta Q. 

 

In this paper, the proposed algorithm introduced a strategy where the voltage angle is 

updated multiple times before updating the voltage magnitude, or vice versa. This approach 

resulted in different convergence speeds depending on the combination of variable updates 

employed for each IEEE bus system. These combinations are denoted based on the number of 

loops for updating each variable. For example, updating the voltage magnitude (V) twice and 

then updating the voltage angle (δ) once within the same iteration is denoted as (2:1). 

 

Additionally, the study investigated various combinations of updating the voltages and 

phase angles to analyze their effects on computational efficiency and convergence speed under 

uncertainty. By exploring different update combinations, the algorithm aimed to achieve 

computational savings and faster convergence, particularly in the presence of uncertainty. 

By examining the impact of different variable update strategies, the research aimed to optimize 

the performance of the IIFDPFL algorithm, enabling faster convergence and improved 

computational efficiency when dealing with uncertain power systems. 
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 Fig.2. Interval Voltage magnitude of IEEE 30bus system  

 
Fig.3.Interval Voltage Angle of IEEE 30bus system 

 
Fig.4.Interval Voltage magnitude with conventional voltage mid with 10% and 20% 

uncertain error  
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Fig.5.Interval Voltage angle with conventional voltage angle mid with 10% and 20% 

uncertain error 

 
Fig.6.Interval Voltage magnitude with 10% uncertain error of IEEE 57 bus system 

 

 

 

 
Fig.7.Interval Voltage angle with 10% uncertain error of IEEE 57 bus system  
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Fig.8.Interval Voltage Magnitude with 10% uncertain error of IEEE 118 bus system 

 

 
Fig.9.Interval Voltage angle with 10% uncertain error of IEEE 118 bus system 

 

In order to validate proposed model with used a known probabilistic method based on Monte 

Carlo simulation. As it show from the Fig.2 to Fig.9 shows the results at 10% and 20% of 

uncertainty interval results enclosed punctual value and 10% of uncertainty, the result from 

interval arithmetic is more conservative than that of Monte Carlo approach and the system 

converges in three iterations for both cases. 

MC method taken 1000 iterations to converges, whereas proposed IIFDPF method 
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Fig.10 : Time (sec) taken for different strategic of updating voltage and voltage angle (Voltages 

(V): Phase angle (δ)) 

 

 

 

Fig.11 : Maximum error taken for different strategic of updating voltage and voltage angle   

Table 1: Number of iteration, Power mismatch and Elapsed time  

Voltage 

Phase 

angle   01:01 01:02 02:01 02:03 03:02 04:04 

 IEEE-30 

BUS 

system 

Elapsed 

time  3.23 3.68 3.37 4.37 4.14 4.23 

  

Max. 

error  6.91E-04 
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 IEEE-57 

BUS 

system 

Elapsed 

time  3.46 6.61 5.00 5.85 5.81 5.86 

  

Max. 

error  1.28E-04 

4.89E-

05 

3.28E-

05 

2.03E-

04 

4.76E-

06 

1.70E-

05 

        
 IEEE-118 

BUS 

system 

Elapsed 

time  6.04 7.48 7.53 9.63 9.73 10.25 

  

Max. 

error  3.16E-04 

3.14E-

04 

1.08E-

06 

6.56E-

06 

6.37E-

07 

6.27E-

07 

From the table 1 and the figure 10 and 11, different values of maximum error and 

elapsed time of simulation for different voltage and voltage angle update.  In the first case for 

IEEE-14 bus system using ten percept of error i.e. uncertainty iteration the case of 01:01 

elapsed time is 2.93sec. and max error is 1.20E-06 which is the smallest of all. But for IEEE-

30, IEEE-57 and IEEEE-118 bus systems the case of 2:1 has an error of 1.16E-05, 3.28E-05 

and 1.08E-06 respectively. When the number of buses increases the case of 2:1 has less error 

and fast convergence in comparison with the other. 

CONCLUSIONS 

 

The analysis presented highlights various methods employed to address the challenges posed 

by nonlinear load flow problems with uncertain solutions. However, there is still scope for 

further research to explore and develop more reliable techniques for solving power flow 

problems while considering uncertainties in load and generator conditions. One promising 

avenue for investigation is the utilization of interval mathematics. In the proposed algorithm, 

the voltage angle is updated multiple times before updating the voltage magnitude, or vice 

versa, resulting in different convergence speeds for different combinations within the same 

IEEE bus system. This approach has been validated against Monte Carlo simulation, and the 

results demonstrate that interval methods exhibit computational superiority over traditional 

Monte Carlo simulations. To enhance the reliability of power flow solutions in the presence of 

uncertainties, future research efforts can focus on refining the proposed methodology and 

exploring alternative approaches based on interval mathematics. These methods have the 

potential to provide more accurate and robust solutions, leading to improved analysis and 

decision-making in power system operations. 
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